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A general discussion is given of the formulation of self-consistent equations for two-body strong-interaction
S matrix elements, on the assumption that all poles are of the Regge type and that asymptotic behavior
is controlled by these poles. A tentative set of specific equations based on the strip approximation is pre-
sented and illustrated by a discussion of the mx problem. In these equations Regge trajectories and residues
for one channel are determined by the top-level Regge poles of the crossed channels. One parameter, the
width of the strip, appears in the equations but it is argued that this parameter may be 6xed by the principle
of maximum strength.

I. INTRODUCTION

HERE have been many attempts to formulate
"bootstrap" equations within the framework. of

the analytically continued strong-interaction 5 matrix,
in order to generate certain of the observed particles
from the assumed existence of others. ' ' Few of these
attempts, however, have employed the assumption of
Regge asymptotic behavior and none has attempted to
exploit the full consequences of such behavior. The
purpose of this paper is twofold: (a) to discuss the
general impact of the Regge-pole assumption on dy-
namical equations for two-body 5 matrix elements;
(b) to illustrate some of the essential points with a crude
treatment (strip approximation) of the z7r problem,
where the goal is to produce the top-level Regge tra-
jectories with 8=5=0, 6=+1, I=O, 1, 2, in terms of
the assumed existence of the pion.

By the Regge-pole assumption we mean the following:
All poles of the strong-interaction 5 matrix can be con-
tinued in angular momentum, all retreating to the left
half of the J complex plane (ReJ&0) for suKciently
large (negative) energies. ' lt has been emphasized
previously that such an assumption corresponds to all
baryons and mesons being composite, with no internal
point structure; more precisely, there are no arbitrary
subtraction terms in the Mandelstam representation.
According to the Sommerfeld-%atson transform con-
necting A(s, J) to A(s, f),' the asymptotic behavior in
the variable t is &t~ '*&', where J,„(s)is the position
of the rightmost singularity in the J plane. If for some
range of s, ReJ (s) &0, the amplitude here vanishes
sufFiciently rapidly as t —+~ so that no arbitrary sub-

tractions in t are allowed; then by analytic continuation
in s, as discussed by Froissart, subtraction terms every-
where else are determined. 9 Chew, Frautschi, and
Mandelstam have shown explicitly how to make this
analytic continuation when the controlling singularity
is a pole, '0 and, according to the equations to be derived
here, the only singularities extending into the right-half
J plane are, in fact, simple poles.

The asymptotic behavior, then, of the amplitude
A (s,f,u) describing the three processes

I. a+b —+ c+d, energy squared=s,

II. a+0 —+ b+d, energy squared = I,

III. u+d ~ 5+c, energy squared= u,

will be taken as that of Fig. 1. Here a'(s) is the right-
most Regge trajectory with the quantum numbers of
channel I and n«(f), a«&(u) are the rightmost trajec-
tories for channels II and III. If for certain quantum
numbers more than one trajectory extends into the

Fro. 1. Regge as-
ymptotic behavior
for a two-particle S-
matrix element.
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strip

FIG. 2. A typical high-level Regge trajectory corresponding
to strongly attractive forces.

right-half J plane one siroply takes the appropriate
sum of powers, weighted with the Regge-pole residues.
(When all trajectories for a particular set of quantum
numbers happen to remain in the left-half plane, the
amplitude vanishes asymptotically in the corresponding
direction in s, t, I space. ) The choice of the plus or
minus sign depends on the J signature of the trajectory,
as has been explained by several authors. "

What is the general nature of the trajectories that
succeed in reaching (or closely approaching) the right-
half J planets It has been shown by Sarut and Zwanziger
and by Taylor that each trajectory n (s) is a real analytic
function and that, if there is no intersection with another
trajectory, n(s) has only the right-hand cut extending
from the physical threshold so to in6nity. "If we assume
further that a(s) is everywhere bounded (see reference
15) we may write the dispersion relation

1 " Ima(s')
a(s) =n(~) = ds'—

I~ s —s

suggested by Singh. '3 It has been proved by Barut and
Zwanziger" that

(& &0) ( o)+ I +(&o))

and it is plausible for trajectories that reach the right-
half J plane that

throughout the s physical region. The latter property
has so far been proved only for potential scattering but
seems likely to be general since it arises from the
physical requirement that resonances decay rather than
grow with time. ' Combining all these features, which

"See, for example, S. Frautschi, M. Gell-Mann, and F.
Zachariasen, Phys. Rev. 126, 2204 (1962); and E. Squires, Nuovo
Cimento 25, 242 (1962).

'I A. Barut and D. Zwanziger, Phys. Rev. 127, 974 (1962).
J. R. Taylor, ibid. 127, 2257 (1962)."V.Singh, Phys. Rev. 127, 632 (1962).

'4 T. Regge, Nuovo Cimento 18, 947 (1960).

Ima(s')
~$

s

Imn(s')
ds'

$~2

The Froissart limit tells us that a(0) ~& 19 and Gribov
has shown that a(~)&—1." Thus the width of the
strip is & (da/ds) ' at s=0, i.e., of the order 1 GeV' in
typical cases." All stable and metastable particles
correspondingly are expected to have masses &1 GeV
and the forward and backward peaks in the crossed
channels are cordoned to momentum transfers of this
same order of magnitude. The absence of large mass
(energy) ratios may be traced to the lack of arbitrary
parameters, the most characteristic feature of our strong
interaction theory.

Our problem, of course, is to calculate the trajectories
(and residues) of the top-ranking Regge poles across
the strips. Could this be done we would have explained
almost everything known about strong interactions. But
what must be the input of the calculations This is a

"Note that for s &so all derivatives are positive, as emphasized
by Singh in reference 13.It is seen in what follows that we actuaHy
only depend on the behavior of Fig. 2 for negative s. If, in fact,
Ren(s} and Ima(s) both increase as s ~ +~, our approach should
still be valid. The right-hand boundary of the strip is then deter-
mined by the point where Ima & 1 and resonances become so broad
as to be unrecognisable.

"V.
¹ Gribov, in Proceedings of the E/evenlh High-Energy

Conference, Geneva, July, INZ (CERN, Geneva, 1962).
'~A natural energy unit for strong interaction physics is the

inverse slope of the Pomeranchuk trajectory at zero energy. This
slope happens to be close to 1 GeV~ and, as discussed in reference
6, other high ranking trajectory slopes seem of the same order of
magnitude.

seem consistent with the equations to be derived, we
conclude that the general form of an interesting tra-
jectory should be as shown in Fig. 2."

This 6gure gives a precise meaning to the strip con-
cept introduced by Chew and Frautschi. 4 In the 6nite
interval for which Ren(s) )0 with Ima(1 the trajectory
dominates the amplitude. For s&0 there will be bound
state or resonance poles when Rem intersects physical
integers (with d Ren/ds)0), and for s(0 we are in
the physical region of the crossed channels where the
high $ (or I) behavior is controlled by the trajectory.
For large values of s, either positive or negative, the
trajectory recedes into the left-half J plane where its
eAect becomes submerged among the other J singulari-
ties. Isolated trajectories are dominant only within
strips in the Mandelstam diagram and the "strip ap-
proximation" may be restated. as the representation of
the full amplitude by those top-ranking Regge poles
that reach (or closely approach) the right-half J plane.

The width of a strip can be estimated in terms of
a(s) at s=0 because in (I.1) the principal value integral
will vanish near the maximum in Imn, this maximum
occurring near
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major puzzle since, as noted above, no arbitrary sub-
traction terms are permitted. More generally one may
say that the problem is to calculate the 5 matrix on the
basis of unitarity and analyticity without an a priori
knowledge of its dimensionality; to know the dimensions
would be already to know which trajectories reach the
right-half J plane to produce particles. No program
has yet been put forward to generate in a systematic
way the full dimensionality of the 5 matrix. (Pre-
sumably such a program would have to explain, among
other things, the strong interaction conservation laws. )
However, many less ambitious calculations are being
attempted, where the existence of certain particles and
conservation laws are assumed and one attempts to
predict other particles (i.e., trajectories) with quantum
numbers arising from combinations. A typical problem
of this nature is to start with a knowledge of the exist-
ence of the pion and to attempt the calculation of Regge
trajectories having the quantum numbers of two-pion
systems.

The confusing element here is the redundancy of the
input. %hen one knows that the isotopic spin of the pion
is 1, with B=5=0 and 6= —1, that its angular mo-
mentum is zero and its parity odd and also that no
other particles of such small mass exist, one has inserted
an enormous amount of information, most, if not all, of
which should be generated in the exact global solution

by our general 5-matrix principles. At the same time we
are forced for practical reasons to neglect or mistreat
many parts of the 5 matrix. It is a dubious proposition,
therefore, to strive for a mathematically consistent set
of equations until the strong interaction problem is
attacked on a global scale. The most we can hope for at
present is to find approximately self-consistent solutions,
appropriate to a localized portion of the 5 matrix.
Mathematicians throw up their hands at such an ill-
defined task, but it seems possible, nevertheless, to
achieve rough results with physical content. The foBow-
ing section deals with general notions that may be useful
in this connection.

II. QUALITATIVE CONSIDERATIONS

Almost all calculations undertaken to date have been
based on two-body 5-matrix elements. Is it reasonable
to hope for real progress within such a restricted frame-
works %e believe the answer to be af6rmative, although
the ultimate extent of progress to be expected is unclear.
Our optimism is based on the absence of arbitrary di-
mensionless constants in the strong interaction scheme.
The natural unit of mass, as discussed above, is ~1 GeV
and without small or large dimensionless parameters all
stable and metastable particle masses ought to be of
this order of magnitude. The consequence should be
that normally a resonance decays principally into two
particles; few resonances are sufficiently massive to
prefer decay into three or more particles. This argument
has substantial experixnental support if, in cIassifying

decay products, we include metastable particles, and

extension of the dednition of the 5 matrix to unstable

particles is now being vigorously studied. 's %hen such

is accomplished it seems reasonable to hope that an
understanding of the two-body problem suffices for
many important purposes. '~

An objection may be raised that at high energies pro-
duction multiplicities are known to be large. That is

true, but it appears that the bulk of high-energy phe-
nomena is to be understood through a prolongation of

Regge trajectories to the region of small negative s, in

the sense of Fig. 2. Thus, an understanding of low-

energy particles and resonances implies an understand-

ing also of high-energy phenomena, because of the
trajectory for small negative s can be calculated by
analytic continuation if it is known for positive s across
the strip. (See Sec. V.) A pessimist could invert this
reasoning, of course, and argue that we should not
expect to calculate the properties of particles and
resonances without 6rst acquiring a grasp of the many-

body problem. There seems no way to resolve such

questions except by actually trying calculations. As
noted above, a clear mathematical characterization of
the problem does not yet appear possible. %e proceed
then, con6ning our attention to 5-matrix elements of
the type a+b-+t,.+d.

Our goal is to approximate with reasonable accuracy
the amplitude A (s,t,u) in the strip regions by superpos-
ing those Regge poles (believed small in number) that
have the relevant quantum numbers and that extend
into or closely approach the right-half J plane. Outside
the strips the situation is presumed to be too compli-
cated to consider at present. How are we to calculate
the top-ranking Regge trajectories' The simplest
method seems to be the X/D technique, appropriately
modified to include the inelastic region and Regge
asymptotic behavior. One derives linear integral equa-
tions for X(s,j) and D(s,J) with kernels analytic in J,
the s-channel Regge-pole trajectories then being given
by D(s,n(s))=0 The t- and . u-channel trajectories are
similarly obtained. The basic dedciency of previous
X/D calculations was the incorrect treatment of asymp-
totic behavior both on the right and left. It seems es-
sential, as discussed in the next section, to correlate
these two regions in the sense of Fig. 1 if oneis toavoid
confusion about the number of arbitrary parameters.

The calculation of the kernel in the E/D integral
equation is based on crossing, that is, analytic continua-

'8 J. Ball, VV. Frazer, and M. Nauenberg, Phys. Rev. 128, 478
(1962); H. Stapp, Lawrence Radiation Laboratory Report, 1962
(unpublished); D. Zwanziger, University of California Physics
Department Report, 1962 (unpublished).

'9 It should be realized that the currently employed continuation
in angular momentum is essentially a two-body continuation. If it
can be de6ned for multiparticle systems, as the optimists believe,
it will be by dividing each system into two groups of particles, each
group having dennite physical angular momentum, and continuing
in the relative angular momentum behoeen the groups. There may
be alternative methods of continuation possible but the one cur-
rently unde;r discusm, on js based op such a two-body decomposition,
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tion to the s-channel physical region from the t and u

channels and vice versa. Previously this continuation
was plagued by divergent polynomial expansions, but
such troubles appear to be removed by the assumption
of Regge asymptotics.

Considerable eBort has been expended in studying
the iterative procedure of Mandelstam as an alternative
to the!V/D technique. ' ""As far as the author is con-
cerned the motivation was that he did not understand
previously how, otherwise, to formulate the strip ap-
proximation. (Also, the problem of threshold behavior
has sometimes been awkward in N/D. ) The formulation
proposed here in terms of Regge poles seems reasonably
well suited to N/D, although it could no doubt be imple-
mented through the iteration procedure. %hich of these
two techniques turns out the more effective remains
to be seen. Perhaps a completely difI'erent approach is
destined to make both obsolete, but this paper considers
the problem from the X/D point of view.

In summary, then, the program is to assume the
asymptotic behavior of Fig. 1, and by the iV/D method
to generate the Regge trajectories for each channel from
the top-level trajectories for the two crossed channels.
There will be no subtraction constants or COD poles
in the iV/D equations and in principle, therefore, no
free parameters in the 6nal result. We shall see, how-

ever, that some arbitrariness arises in making the transi-
tion across the strip boundary, i.e., from the low-energy
resonance region to the high-energy domain where
multiple production dominates. Our approach does not
seem adequate to describe this transition correctly.
Fortunately, we can fall back for assistance on the
principle of maximum strength [the requirement that
for the Pomeranchuk trajectory a(0) = 1$.This principle
presumably constitutes redundant information in a
bootstrap calculation, where the existence of one or more
particles is assumed at the beginning, but it is available
to resolve ambiguities associated with inadequate ap-
proximation procedures.

III. A MODIFIED SET OF N/D EQUATIONS

On the basis of the asymptotic behavior of A (s, t,u)
indicated in Fig. 1 one easily deduces that

(III.1)

consider the function

B,(s)=q,—"Ai(s) ~ s"'"''a' '/s'lns. (IIL2)

I
Bi(s)=B,P(s)+ ds'—

X p

ImB((s')

S —S1
(III.3)

if sp is the physical threshold, and note that the correct
asymptotic behavior (III.2), or, more precisely

B((s) —-. B( (s), (III.4)

is immediately guaranteed for l (o."rr'(0). Since the
N/D equations to be developed on the basis of (III.3)
can be analytically continued in l we hope that the
asymptotic behavior continues to be correct for larger l.
In any event, the self-consistency problem only involves
the lower / range, as shown in Sec. IV.

In our modified N/D approach we cause N~(s) to
carry all the singularities of BP(s), that is, the physical
cut from si to 00 as well as the unphysical cuts. Our new

D~(s) has a discontinuity only between se and s& and is
normalized to unity at in6nite s. Thus, writing

Let us denote the total contribution to B~(s) from all
the high-level Regge poles in channels II and III by
BP(s), where from BP(s) we have removed the cut in
s over the strip region 0&s(s~, s~ being the point above
which B~(s) is dominated by B~~(s) Ap. rocedure for
removing the cut is shown in the next section; it does
not alter the asymptotic behavior of B~~(s) nor does it
appreciably alter the discontinuity of BP(s) across the
unphysical (left-hand) cuts. The reason is that these
unphysical discontinuities are dominated by the par-
ticles (i.e. the poles in r and u) of the crossed channels
and these poles are not afI'ected when the s cut is pushed
out a 6nite distance. The alteration mainly chops out
spurious nonresonant high-l components in channels II
and III.

Now, since B~p(s) is real for 0(s(s~ and since the
discontinuity of B&(s) across the unphysical cuts as well

as across the physical cut for s&sI is approximately
equal to that of B&~(s) 2' we may write as the basic equa-
tion of the (new) strip approximation

B((s)=N, (s)/D, (s), (III.S)
The limit as s ~ —~ is more complicated and is con-
sidered elsewhere; here we merely remark that if n" (t)
or a»&(u) exceed unity over any interval the behavior
as s —+ —Qo is suKciently pathological as to preclude
calculational procedures where one explicitly integrates
to infinity on the left. The behavior on the right is better
than that on the left because of the Froissart limit
n (r) & 1, x ~&0. We now develop N/D integral equations
restricted to the physical (right-hand) cut. As usual, we

~ P. Burke and C. Tate, in Proceedings of Ihe Eleventh High-
Lnergy Conference, Geneeo, Jnlp, JP6Z (CERN, Geneva, 1962).

we have
1 " ImD&(s')

Dg(s) =1+— ds' (III.6)
Sp S —S

I

Instead of expressing N~(s) as an integral over its cuts,
we write"

~' Remember that the poles in t and n are completely contained
in the terms from which B&~{s)has been projected.

~ A similar equation has been derived by J. L. Uretsky, Phys.
Rev. 123„1459 (1961).The author 6rst learned of this type of
equation from S. Mandelstam (private communication, 1959).
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Ni(s) =Bi (s)Di(s)

1 " Im(BiP(s')Di(s'))ds', (III.7)

leap

S —S

an expression with the required discontinuities and ap-
proaching Bp(s) at in6nity, at least for I (air i'i(0).
Since, by construction, BP(s) is real in the interval
between so and si we may rewrite (III.7), with the aid
of (III.6), as

Ni(s)=Bi (s)

Bip(s') B,~(s)—
ds

gp S S
ImDi(s'). (111.8)

The final step is to use the unitarity condition in order
to obtain an expression for ImDi(s) in the interval so to
s~. Our system of equations becomes closed if we employ
the two-body relation

OI

ImBi(s) =B;(s)p, ( s) B,( )s

ImDi(s) = pi(s)cVi(s—),

(III.9)

(III.10)

-"' J. D. Bjorken, Phys. Rev. Letters 4, 473 (198));S. Mandel-
stam (private communication, 1959).~ F. Zachariasen and C. Zemach, Phys. Rev. 128, 849 (1962),
have shown, for example, that the ~co as well as the xm channel is
important in discussing the properties of the p.

where p&(s) is the usual phase-space factor, but one must
ask if this equation is adequate for the entire interval.
In other words, is there important production of many-
body systems before one reaches the asymptotic regions
As stated above we believe that if all two-body channels
are included —with metastable as well as stable particles—then residual multiparticle production should be
small for s &s~. Now for an arbitrary finite number of
stable two-body channels the matrix generalization of
the above equations is straightforward, " and recent
work indicates that unstable particles can be brought
into the same framework. '8%e are, therefore, optimistic
about the reliability of an eventual closed system of
two-body equations. %e are not so sanguine about the
quantitative adequacy of a one-channel approximation, '4

but because of its simplicity such an approximation
deserves first consideration.

Substituting (III.10) into (III.8) we obtain our final
equation

Ni(s) =BP(s)

1 *& BP(s')—BP(s)+— ds' pi(s')Ni(s'), (III.11)
SP S —S

a linear integral equation uniquely determining Xi(s)
in terms of Bi~(s) if the latter is finite throughout the
interval sp&s~&s&. Actually, as a result of the cut dis-
placement, the function Bi~(s) may be logarithmically

Equation (III.11) is therefore singular if 1mB&~(si) WO,
but only marginally so, and can be shown to possess a
unique solution as long as

0~&pi(si) ImBi (s,) (~1. (III.13)

This latter condition is not an explicit consequence of
our equations but follows from the general unitarity
limitation on partial wave amplitudes if one remembers
that, in our strip approximation, ImBi(s)=ImBi~(s)
for s& si. If (III.13) is not satisfied our N/D equations
have no solution, as can be seen from (III.3) where the
left-hand side is bounded by elastic unitarity as s ~ s&

from below. Consequently, the logarithmically infinite
parts of the two terms on the right of (III.3) must can-
cel, and this can only happen if (III.13) is satisaed since
ImBi(s) is similarly bounded (by elastic unitarity) as
s ~ s~ from below.

It is not dificult to show that as s —& si both Ni(s)
and Di(s) behave

where

~ (s s)—&i(~i)/~

5i(si) = sin 'Lpi(si) ImBiP(si) j'",
and, correspondingly, that 1mB&(s) is continuous across
the boundary at s= s&. The singularity in our equation„
therefore, plays two physically useful roles: First, it
requires unitarity in the inelastic region, at least in the
form (III.13). Second, it leads to a smooth connection
between the two-body and the multiple production
regions so far as cross sections are concerned.

In a forthcoming paper, (III.11) will be transformed
into a nonsingular (Fredholm) equation; it then follows
that in the complex l domain where BiP(s) is holo-
morphic the functions N&(s) and Di(s) are analytic
(except for possible fixed poles in I that cancel in N/D)
and Bi(s) correspondingly meromorphic with Regge
poles at the zeros of D&(s). Therefore, it is now necessary
to consider the construction of the function Bip(s)."

IV. CONSTRUCTION OF BP(s) AS AN ANALYTIC
FUNCTION OF l

At this point the discussion is to be specialized to the
xx amplitude but the general nature of the main points
is evident. Suppose that for isotopic spin I in the 3

channel there is a single trajectory nr(t) extending into
the right-half J plane. If the residue of this pole in
Bir(t) is yr(t) then the usual Sommerfeld-Watson trans-
form" leads to a contribution to Ai(t, s) from this pole

"It is in the construction of Bp(s) that the major practical
difference arises between the scheme proposed here and that of
D. Kong in reference 5. The ideas underlying the two schemes are
closely related,

infinite at the uppr limit s= SI.

BP(s):—(1/7r) 1mB'(si) ln(si —s). (III.12)
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E.(—z) g1+(gP—i) 1«

dS
(1—2zz+z')'I'

—s.[2az(t)+1+z(t)qP '&'&

(~& (—1—s/2q~')+ (—1)'P z(~&(1+s/2qP)
X--

2 sine.az (t)
(IV.1)

The s cut in this formula begins at s=o, however, and

recently Khuri and, independently, Jones have pointed
out that the cut may be displaced by using in place of
the Legendre function,

oo g
(it (z z&) = 8$, ReCr(0,

g,~(~, &&
' (1—2zz+0)

representation'8

1 +i

q."B&+&(s,l) =- dz Pr(z)A&+&(s, z)
2 -1

sinful
dz Q& (—s)A &+& (s,z), (IV.5)

where A'+'(s, z) is the pair of functions constructed to
have only a right cut in the z plane (with q,r positive)
and whose even and odd parts in z, respectively, coin-

cide with the even and odd parts of A (s,z)."Because of
the Bose statistics in the ~ amplitude we may suppress
the (&) superscript and the required projection of

(IV.4) simply acquires a factor 2 altogether with the
crossing matrix

Bz~(s,l) =P Pzz
Reer) —1, (IV.2) ls 2l+2

the two forms being analytic continuations of one
another. '6 The function

Rz'(t, s) =yz(t)q, ~«'&[2zrz(t)+1 j
X$„(1+s/2qP, 1+s,/2qP) (IV.3)

can then easily be shown to satisfy a Mandelstam repre-
sentation, with a real double-spectral function that is
nonzero in two regions": (a) s) s&, qP) 0 and (b) s) sz,

4qp( —st. Provided Rear(t) &0 throughout the latter
region, as is guaranteed by our basic assumptions, we

may subtract out the contribution of this spurious
piece of double spectral function, thereby achieving
an analytic function Rz(t, s), real for s ~s&, qP 0, and
with the same asymptotic properties as Rz'(t, s) This.
new function still has poles in t when and only when

nz(t) passes through positive integers (or zero) and
has no poles in s. All poles on or near the physical sheet
are included with the correct residues, therefore, when
terms of the form of EI for each high-ranking trajectory
are superposed. There are no spurious poles. The cor-
rect asymptotic behavior within the strip also is en-
sured. On this basis, therefore, we use in place of (IV.1),

A zP(t, s) = ', [Rz(t,s)+ (—1)-zRz(t, g)j (IV.4)

as the contribution from an individual pole in the t
channel.

We perform the projection needed for Btp(s) in a
slightly unconventional manner so as to stay within the
region of reality. Normally, the continuation in angular
momentum is made by the Froissart-Gribov formula"
in terms of the absorptive parts in the t and I, channels.
VVong, however, has pointed out the equivalent

"N. Khuri, Institute for Advanced Study, 1962 (unpublished);
E. Jones (private communication, Berkeley, 1962); see also, G. F.
Chere, University of Cambridge, 1963 (unpubhshed)."M. Froissart, Report to the La Jolla Conference on Theoretical
Physics, June, 1961 (unpublished); V. N. Gribov, J. Exptl.
Theoret. Phys (U.S.S.R.) 41, 667 and 1962 (1961).

1 '
~ t&&

zit P, i 1+ iAz'(t, s)
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dt Qr( —1—t/2q. ')Az. ~(t,s) . (IV.6)

Pzz'= a
1

E 3
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(IV.7)

The reduced residue yz(t) for the leading trajectory
approaches a constant as t—+~ in potential scattering.
If such is true in general, we see that BP(s,l) is holo-

morphic for
Rel) maxzrz(eo ).

Evidently, if all the az(t) approach the same limit at
infinity (perhaps —1, as suggested. by the work of
Gribov") we have a self-consistent situation. There is no
reason to expect such a degree of consistency in the
strip approximation; outside the strips our equations
unreliable. Nevertheless, if all uz(oo) are negative, as
originally supposed, we have a chance of 6nding ap-
proximately consistent solutions of our equations across
the strips.

Notice that as the equations are formulated one deals
only with the trajectories zrz(t) for t(0, which means
that the self-consistency problem only involves real

"' D. Wong (private con&n&unieation, 1962).

The domain of holomorphy in l of Bz~(s,l) is evidently
determined by the behavior of Az P(t,s) at large (nega-
tive) t If all thenz . (t) approach

finite limits

a eo we may
read oif this behavior from (IV.4) and (IV.3) as

Az ~(t,s) ee t"t"&Inter (t)X (function of s). (IV.S)t~~
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V. EFFECTOR-RANQrE FORMULAS FOR
TRAJECTORIES AND RESIDUES

In the region t&0 where n(t) and y(t) are real and
free from singularities it should be possible to approxi-
mate these functions by effective-range formulas of the
type suggested by Balazs."Kith nonintersecting tra-
jectories Lsimple zeros of D(t, t)j the previous discussion
allows us to start from the general forms

p (t')
dt'

t —t
(V.1)

(V.2)

l»&j.. Hopefully, the parameter s& can be determined
by the maximum strength requirement or~(t=0) = 1

and, as argued in the following section, the other tra-
jectories automatically fall below the Pomeranchuk.
Thus, we hope to satisfy the Froissart limit, even though
unitarity at high energies is not explicitly invoked. It
is not so hopeful that we can consistently satisfy the
requirement of yr~(t) vanishing at that negative t
where Q.g~=O. Could unitarity be explicitly enforced
such a result would be guaranteed, but we must depend
on some not yet understood mechanism to produce a
zero in the numerator function Xl~ at the appropriate
place. Nevertheless, this dehciency is not as disastrous
as might appear at 6rst sight because there is no prospect
in any event of finding a mathematically self-consistent
solution to our bootstrap problem. %'hat will be done is
to assume a set of ar(t) and yr(t) for t&0 and see how
closely these reproduce themselves. The trial functions
or(t) and yr(t) can be characterized through eRective
range formulas by a 6nite number of adjustable param-
eters over the range where nr&0 (see following section)
and it will be possible to constrain the formula for
pr 0(t) so that this function vanishes when ar 0(t)
vanishes, regardless of the choice of adjustable param-
eters. It should be extremely interesting to see whether
the yr-o(t), emerging from the solution of our E/D
equations, shows any tendency to vanish in the ap-
propriate place. Such a vanishing could result from a
short-range repulsive force together with a longer range
attraction, the combination producing a zero in
»r~(s, l). That a short-range repulsion systematically
should accompany strongly attractive long-range forces
has been argued previously, "but even if our current
strip equations contain manifestations of this repulsion
there is no visible reason why the zero in Xr-o(s, t) must
occur at precisely the correct point. Explicit satisfaction
of unitarity in s and t channels simultaneously is pre-
sumably required to achieve such a result.

prescribed accuracy over a prescribed interval away
from the cuts, one may determine on an a priori basis
the number and the location of poles which replace the
cuts. Often two poles lead to reasonable accuracy, but
each situation must be individually analyzed. Here we
want to represent our functions over the interval
—s~&t&0, so the number of poles depends on the ratio
seto, which may be large. However, the discontinuities
p, ~(t) each start from threshold like (t—to)~&")+'", so
the eA'ective threshold is displaced upward to some
reasonable fraction of s~ in the interesting cases. It is
plausible, then, to expect a two-pole representation of
the cut generally to sufBce.

Our effective-range formulas with two poles would be

n(t) = aq+a2/(t2 —t)+a~/(ta —t), (V.3)

~(t) =ci+c2/(t2 —t)+c~/(4 —t), (V.4)

where t2 and tl are to be chosen by a Balazs type of
analysis and lie in the range to&t2, tm&s|. If n(t) has a
zero for t&0 for a trajectory of even J signature (such
as the Pomeranchuk trajectory) we determine one of
the c parameters by the requirement that p(t) have a
zero at the same point. It may be that ui should be
6xed at —1 if further investigation shows this to be
the asymptotic limit of all trajectories. For the Pomer-
anchuk trajectory a second parameter in (V.3) may be
fixed by the maximum strength requirement o(0) =1.

A check on the adequacy of the forms (V.3) and (V.4)
is provided by the actual solutions of our X/D equa-
tions; it will soon be evident whether more poles should
be added. One also learns whether in our strip approxi-
mation n(~) = —1 and whether the zeros of D(t,t) are,
in fact, simple for the top-ranking trajectories, as we
have assumed.

VL PION-PION DYNAMICS

Ke conclude with an optimistic forecast of how the
calculations of the ~ amplitude in the one-channel
strip approximation may develop. Our prediction is
based not only at a peek at nature but on many
previous calculations, ~ particularly those of Chew and
Mandelstam, ' of Ball and Kong" of Zachariasen and
Zemach, '4 of Kong, ' and of Balazs."

A natural starting point would be to assume just the
Pomeranchuk trajectory and look for an approximately
self-consistent solution involving the I=0 amplitude
alone. Ke predict that no such solution will be found
coming close to the maximum strength requirement
or 0(t=0) =1. The reason is the relatively small coef-
6cient 3 coupling the I=O state to itself in the crossing
matrix (IV.9), plus the even j signature of the Pomer-
anchuk trajectory which makes its (real) contribution

where a&, c&, p (t), and p~(t) are real. Balazs has analyzed
this type of function'9 and shown that, to achieve a

~ L. Balazs, Phys. Rev. 125, 2179 (1962).

I' A great many m~ calculations, in addition to those listed, have
been published but employ methods that are difhcult to relate to
the calculation proposed here.

g' J. Sall and D. Kong, Phys. Rev. Letters 7, 390 {1961).~ L. BaQas, Phys. Rev. 128, 1939 (1962).
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to (IV.4) small when ar 0 is near 1. (It is the imaginary
part of Ar P that is dominant at high energy. ) The
force, in question, is attractive and one might think
that yr o(/) could become large enough to counter-
balance the aforementioned e8ects, but we expect from
past experience that the analytic continuation of uni-

tarity in the t channel, through the X/D equations,
constrains the magnitude of yr o(t).

One then looks for help from either I= 1 or I= 2 and
a glance at the crossing matrix plus consideration of J
signature shows the former to be the more promising.
We, therefore, try adding an I=1 trajectory, which
according to (IV.7) must lie below the Pomeranchuk
trajectory because the attraction it feels from I=1
exchange is only half as strong. Now there is a chance
for a fairly consistent solution (see the work of Balazs"),
where A» ~ delivers a strong attraction to I=O, a
weaker but still attractive force for I= 1 and a repulsion
for I=2. The uniform attraction delivered to all three
states by Al 0~ is relatively weak as we have seen, so
the net force acting in I=2 is probably repulsive with
the trajectory here staying in the left-half J plane.

%e hope that the results are not too sensitive to the
precise value of sj and that, perhaps, this parameter can
be 6xed by requiring ar 0(t=0) = 1 (the results of Balazs
support such a hope~). A diflicult test of the theory is
to look for second. -rank trajectories. Current experi-
mental indications are that at least one such reaches the
right-half J plane for I=O but probably none for I= 1.
Since our force strength is at a maximum for I=O the
situation is hopeful, but no previous calculations throw
any light on this matter.

In view of the one-channel approximation, we are
not optimistic about the accuracy of predicted residues

yr(t), although normalizing the Pomeranchuk tra-
jectory at t=O may lead to reasonable predictions of
resonance energies. " According to the estimates of
Blankenbecler and of Zachariasen and Zemach, 24 it is
necessary to include at least the mao channel in addition
to the xx if accurate resonance widths are to be achieved.

~Although the self-consistent problem is restricted to k&0,
there is no dBBculty in continuing our solutions to 5& to in order to
see if resonances are predicted and with what masses and widths.

~ R. Blankenbecler, Phys. Rev. 125, 755 (1962).

To emphasize the content of the particu1ar enterprise
under consideration we summarize some obvious points
of contact with experiment:

(1) The function ar 0(t) for —s&&1&~0 already has
been roughly measured from high-energy pp elastic
scattering. '~

(2) The residue yr-0(t=0) is known accurately from
total cross-section measurements. "

(3) A prediction emerges from the calculation as to
whether a J=2, I=0 resonance is to be expected and
with what mass and width.

(4) The measured mass of the p tells us that
Rear g(t=30m ')=1.

(3) The residue yr ~(1=30@& ') is known roughly from
the width of the p.

(6) The value of ar &(t= 0) is known roughly from the
energy dependence of the s+p and s p total cross-sec-
tion diR'erence. 37

(7) The height of the secondary trajectory for I=0
is known at t'=0 to be 0.5."

(g) It is indicated experimentally that no secondary
trajectory for I=1 and no trajectories at all for I=2
reach the right-half J plane.

All these points and, no doubt, others to emerge from
future experiments lie within the domain of our boot-
strap calculation. All are supposed to be predicted,
starting only from a knowledge of the pion mass and
quantum numbers. Of course, as emphasized repeatedly
in this paper, we do not expect accurate predictions
until all the important tw'o-body channels are included.
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